
From the Unit Circle… 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It should be clear that the areas described can be “ranked” in ascending order as presented; 
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We may rewrite this as:      
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1.   The area of this right triangle is 

 
 

2.   The area of this circular sector is 
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3.   The area of this right triangle is 

 
 



Clearly, the common factor ½ can be disregarded, so we have:      
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Now, divide all terms by  sin : 
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We assume that the sine is positive, so the inequality “directions” are preserved. 

 

Next, though, we reciprocate all terms, and this will “reverse” the directions of each inequality: 
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Therefore the ratio  
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  is “trapped” between 1 and the value of   cos  

 

We may write the relationships in reverse, as   
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Interestingly, the relationships hold for 2
   due to the even & odd properties of cosine and 

sine, respectively.  With this in mind, we finally let   approach 0 in each expression. 

 

If these limits exist, we should have    
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We can quickly agree that      1coslim
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Therefore, since  
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  is between these two limited values, we conclude that 
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as well. 
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The limits of the quantities which “trapped”  
 


sin
  are equal…so the limit of  

 
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sin
  is 

“squeezed” between those to share the same limit. 

 

…it’s the Squeeze Theorem! 


